Can a Blood Pressure Drug Protect The Brain from Parkinson's?

Curated by Claudia Shannon / Research Scientist / ishonest

Scientists at the University of Cambridge in the United Kingdom and the Guangzhou Institutes of Biomedicine and Health in China suggest that the hypertension drug felodipine could be a promising candidate for “repurposing” as a treatment for neurodegenerative conditions.

In experiments with zebrafish and mice, they showed that felodipine can prompt a cellular recycling process called autophagy to clear away toxic proteins in brain cells, or neurons.

ishonest No.111 - Purge Impurities

Recommended
No.111 - Purge Impurities

“Our data suggest,” they write in a recent Nature Communications paper, “that felodipine induces autophagy in neurons and enhances removal of a range of disease-causing proteins: mutant huntingtin, mutant [alpha]-synuclein, and tau.”

Mutant huntingtin is characteristic of Huntington’s disease, while mutant alpha- synuclein and tau are hallmarks of Parkinson’s disease and Alzheimer’s disease, respectively.

The study is important because it shows that felodipine can remove mutant alpha- synuclein from the brains of mice at blood levels “similar to those that would be seen in humans taking the drug [for hypertension].”

“As a result,” he continues, “the drug was able to slow down progression of these potentially devastating conditions and so we believe it should be trialed in patients.”

Toxic proteins and autophagy

Cleanse and hydrate : why choose when you can have both?

Learn more

The production of proteins in cells is complex and involves many components. The process makes a long chain of amino acids and then folds it into a 3D shape.

However, when proteins do not fold correctly, they can accumulate into potentially toxic clusters. Such accumulation is a trigger for autophagy, a cell function that removes the faulty proteins, breaks them down, and recycles the components.

Prof. Rubinsztein and his colleagues comment that neurodegenerative diseases such as Parkinson’s, Huntington’s, and Alzheimer’s commonly feature the “accumulation of aggregate-prone proteins within […] neurons,” and they cite studies that have shown how impairing autophagy can lead to such accumulation.

Studies have also shown that inducing autophagy chemically or genetically in flies, zebrafish, and mice can clear away these toxic proteins and reduce the damage they cause.

ishonest No.364 - Acne Scars

Recommended
No.364 - Acne Scars

However, as yet, there are no treatments for neurodegenerative diseases that use “autophagy inducers.” One way to develop treatments would be start from scratch with new experimental drugs.

Another way would be to search for potential candidates among the drugs that regulators have already approved for other human conditions and test them for the new condition. Such a route can cut the time and cost of developing a new treatment.

Grounds for ‘cautious optimism’

The scientists used genetically altered mice and zebrafish for their study. The mice had gene alterations that induced them to develop either Huntington’s disease or a type of Parkinson’s disease. The zebrafish had gene alterations that induced changes that model a form of dementia.

Treatment with felodipine reduced the buildup of toxic, incorrectly folded proteins and signs of disease in the mouse models of Huntington’s disease and Parkinson’s disease, as well as in the zebrafish model of dementia.

Meet the After-Sun Essential That Will Help Skin Recover Fast

Learn more

When scientists study the effects of drugs in mice, they typically use higher levels than the doses that are safe in humans. In this study, however, the team showed that the blood levels of felodipine necessary for triggering autophagy were similar to those in humans.

They inserted “minipumps” under the mice’s skin to enable drug concentrations at levels similar to those of humans and to keep the levels steady without wild fluctuations.

These results are just the beginning, says Prof. Rubinsztein. “We need to be cautious,” he adds, “but I would like to say we can be cautiously optimistic.”

“The drug will need to be tested in patients to see if it has the same effects in humans as it does in mice.”

Prof. David C. Rubinsztein

Read more on: brain


Learn about unknown needs of your skin for free